/*----------------------------*/ MIBIS - ISCTE, Master in Integrated Business Intelligence Systems: 08/05/21

Extracting Clinical Knowledge from Electronic Medical Records

 Abstract

As the adoption of Electronic Medical Records (EMRs) rises in the healthcare institutions, these resourcesimportance increases because of the clinical information they contain about patients. However, the unstructured information in the form of clinical narratives present in those records, makes it hard to extract and structure useful clinical knowledge. This unstructured information limits the potential of the EMRs, because the clinical information these records contain can be used to perform important tasks inside healthcare institutions such as searching, summarization, decision support and statistical analysis, as well as be used to support management decisions or serve for research. These tasks can only be done if the unstructured clinical information from the narratives is properly extracted, structured and transformed in clinical knowledge. Usually, this extraction is made manually by healthcare practitioners, which is not efficient and is error-prone. This research uses Natural Language Processing (NLP) and Information Extraction (IE) techniques, in order to develop a pipeline system that can extract clinical knowledge from unstructured clinical information present in Portuguese EMRs, in an automated way, in order to help EMRs to fulfil their potential.  View Full-Text

 Keywords Information Extraction, Knowledge Extraction, Natural Language Processing, Text Mining


 


Master in Integrated Business Intelligence Systems (MIBIS) - ISCTE-IUL

 

An Energy Management Platform for Public Buildings

 

Abstract

This paper describes the development and implementation of an electronic platform for energy management in public buildings. The developed platform prototype is based on the installation of a network of wireless sensors using the emerging Long Range (LoRa) low power long-range wireless network technology. This network is used to collect sensor data, which is stored online and manipulated to extract knowledge and generate actions toward energy saving solutions. In this process, gamification approaches were used to motivate changes in the users’ behavior towards more sustainable actions in public buildings. These actions and the associated processes can be implemented as public services, and they can be replicated to different public buildings, contributing to a more energy-sustainable world. The developed platform allows the monitoring and management of the heating/cooling, electric power consumption, and lighting levels. In order to validate the proposed electronic platform, sensor information was collected in the context of a university campus, which was used as an application scenario in public buildings. View Full-Text