/*----------------------------*/ MIBIS - ISCTE, Master in Integrated Business Intelligence Systems: 08/04/21

Disaster Management in Smart Cities

 

Abstract

The smart city concept, in which data from different systems are available, contains a multitude of critical infrastructures. This data availability opens new research opportunities in the study of the interdependency between those critical infrastructures and cascading effects solutions and focuses on the smart city as a network of critical infrastructures. This paper proposes an integrated resilience system linking interconnected critical infrastructures in a smart city to improve disaster resilience. A data-driven approach is considered, using artificial intelligence and methods to minimize cascading effects and the destruction of failing critical infrastructures and their components (at a city level). The proposed approach allows rapid recovery of infrastructures’ service performance levels after disasters while keeping the coverage of the assessment of risks, prevention, detection, response, and mitigation of consequences. The proposed approach has the originality and the practical implication of providing a decision support system that handles the infrastructures that will support the city disaster management system—make the city prepare, adapt, absorb, respond, and recover from disasters by taking advantage of the interconnections between its various critical infrastructures to increase the overall resilience capacity. The city of Lisbon (Portugal) is used as a case to show the practical application of the approach. View Full-Text
 
 
 

Calcium Identification and Scoring Based on Echocardiography. An Exploratory Study on Aortic Valve Stenosis

 

Abstract

Currently, an echocardiography expert is needed to identify calcium in the aortic valve, and a cardiac CT-Scan image is needed for calcium quantification. When performing a CT-scan, the patient is subject to radiation, and therefore the number of CT-scans that can be performed should be limited, restricting the patient’s monitoring. Computer Vision (CV) has opened new opportunities for improved efficiency when extracting knowledge from an image. Applying CV techniques on echocardiography imaging may reduce the medical workload for identifying the calcium and quantifying it, helping doctors to maintain a better tracking of their patients. In our approach, a simple technique to identify and extract the calcium pixel count from echocardiography imaging, was developed by using CV. Based on anonymized real patient echocardiographic images, this approach enables semi-automatic calcium identification. As the brightness of echocardiography images (with the highest intensity corresponding to calcium) vary depending on the acquisition settings, echocardiographic adaptive image binarization has been performed. Given that blood maintains the same intensity on echocardiographic images—being always the darker region—blood areas in the image were used to create an adaptive threshold for binarization. After binarization, the region of interest (ROI) with calcium, was interactively selected by an echocardiography expert and extracted, allowing us to compute a calcium pixel count, corresponding to the spatial amount of calcium. The results obtained from these experiments are encouraging. With this technique, from echocardiographic images collected for the same patient with different acquisition settings and different brightness, obtaining a calcium pixel count, where pixel values show an absolute pixel value margin of error of 3 (on a scale from 0 to 255), achieving a Pearson Correlation of 0.92 indicating a strong correlation with the human expert assessment of calcium area for the same images. View Full-Text